Acknowledgement

This manual was prepared under the auspices of the National Water Well Association Committee on Water Well Standards, comprised of thirty-four prominent technical and well contractor members of the ground water industry, including representatives from state regulatory agencies. The technical research, compilation and editing was performed by the NWFA Research Facility at Rice University in Houston, Texas, under the general direction of Dr. Jay H. Lehr, NWFA Executive Director, and the immediate supervision of Mr. Michael D. Campbell, NWWARF Director of Research. Other NWFA Research Facility technical and editorial personnel involved in the project were: Mr. William A. Hunt, Mr. Lorin J. Staplin, Ms. Mary Hodge, Ms. Emily N. DeWitt, and Ms. Stephanie S. Campbell. Many people in industry and state and federal agencies also provided input, which is gratefully acknowledged.

A special note of acknowledgement and gratitude is made to Mr. Robert B. Heater for development of the basic format for the Key to these standards.

The EPA office of Water Supply project officer was Mr. Edwin L. Hockman. Mr. Wilbur J. Whitsell and Mr. William E. Thompson of the Office of Water Supply undertook the major tasks of review, editing, and project coordination.
REGIONAL COMMITTEEEMEN

EASTERN SECTION:
Mr. Edwin O. Floyd (T)—North Carolina
Mr. Ira L. Goodwin, Jr. (C)—Maine
Mr. John Kriska (C)—Florida
*Mr. Richard Lauman (C)—New York
Mr. Michael Bell (T)—Virginia
Mr. Robert R. Peters (C)—Virginia
*Mr. Ralph E. Preble (T)—Massachusetts
**Mr. Robert B. Heater (Chairman) (C)

MIDWEST SECTION:
*Mr. John Brown (C)—Missouri
Mr. William M. Ebert (C)—Illinois
*Mr. Jerry T. Hill (C)—Indiana
Mr. John I. Johnson (C)—Louisiana
Mr. John E. Schmitt (C)—Michigan
Mr. Walter Stockert (C)—Ohio
Mr. William Walker (T)—Illinois
**Mr. Truman Bennett (Chairman) (T)

ROCKY MOUNTAIN SECTION:
Mr. Tom Ahrens (T)—Colorado
Mr. Tommy C. Bussell (C)—Texas
Mr. Archie Hier (C)—Colorado
Mr. Darrel L. Jensen (C)—Nebraska
Mr. Joseph L. Mogg (T)—Minnesota
*Mr. Thomas L. Stevens (C)—Minnesota
*Mr. Taylor Virdell (C)—Texas
Mr. Howard M. White (C)—Iowa
**Mr. Michael D. Campbell (Chairman) (T)

PACIFIC SECTION:
Mr. William S. Bartholomew (T)—Oregon
Mr. William G. Coffey (C)—New Mexico
Mr. J. F. Guardino (C)—California
Mr. Keith Robertson (C)—Nevada
Mr. Harold O. Meyer (C)—Washington
*Mr. William Osborne (C)—Montana
*Mr. Edwin A. Ritchie (T)—California
Mr. Robert L. Strasser (C)—Oregon
**Dr. Jay H. Lehr (Chairman) (T)

Note:
(C) = Contractor Member of Committee (23 members)
(T) = Technical Member of Committee (11 members)
* = Member of the National Committee (Elected by Each of the Four Regional Committees)
** = Member of the Steering Committee (Chairman’s Committee)
INTRODUCTION .. 1

KEY TO WELL STANDARDS ... 4

GENERAL PREamble .. 9

SECTION 1. GENERAL CONDITIONS 11

Article
1. Definition of Terms ... 11
2. Award, Execution of Documents, Delivery of Bonds, etc. 12
3. Progress and Submission Schedules; Preconstruction Conference; Time for Starting the Work ... 13
4. Correlation, Interpretation and Intent of Contract Documents .. 14
5. Ownership and Copies of Documents; Record Documents 14
6. Work by Others .. 15
7. Subcontracts .. 16
8. Materials, Equipment and Labor: Substitute Material or Equipment .. 17
9. Patent Fees and Royalties 18
10. Permits, Laws, Taxes and Regulations 18
11. Availability of Lands; Physical and Subsurface Conditions; Reference Points .. 18
12. Use of Premises .. 19
13. OWNER's Status During Construction 20
14. PROJECT REPRESENTATIVE'S Interpretation and Decisions .. 21
15. Shop Drawings and Samples 22
16. Tests and Inspections .. 23
17. CONTRACTOR'S Supervision and Superintendence 23
18. Safety and Protection; Emergencies 24
19. Access to the Work; Uncovering Finished Work 25
20. Changes in the Work .. 26
22. Cash Allowances ... 28
23. Change of the Contract Time 28
24. Neglected Work .. 29
25. Warranty and Guarantee; Correction, Removal or Acceptance of Defective Work .. 29
26. Application for Progress Payments 30
27. Approval of Payments .. 31
28. Substantial Completion .. 32
29. Partial Utilization ... 33
30. Final Payment .. 34
31. Waivers of Claims and Continuing Obligations 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. SPECIAL CONDITIONS</td>
<td>42</td>
</tr>
<tr>
<td>Article</td>
<td></td>
</tr>
<tr>
<td>43. General</td>
<td>42</td>
</tr>
<tr>
<td>44. Glossary of Technical Terms</td>
<td>42</td>
</tr>
<tr>
<td>3. TECHNICAL STANDARDS</td>
<td>48</td>
</tr>
<tr>
<td>Article</td>
<td></td>
</tr>
<tr>
<td>45. Test Holes and Samples</td>
<td>48</td>
</tr>
</tbody>
</table>

HOLE LOCATION AND PURPOSE

| Article | |
| 45.100–000–000. Hole Location and Purpose | 51 |

DRILLING METHODS

Article	
45.010–000–000. Contractor's Choice	51
45.020–000–000. Driven Well Pallet Method	51
45.030–000–000. Jetting or Hydraulic Method	51
45.040–000–000. Reverse Hydraulic Rotary Method	51
45.050–000–000. Air Rotary Method	51
45.060–000–000. Rotary Method	51
45.070–000–000. Combined Driving and Drilling Method	51
45.080–000–000. Cable Tool Method	52

DRILLER'S LOGS AND REPORTS

Article	
45.001–000–000. Driller's Log	52
45.002–000–000. Daily Driller's Report	53
45.003–000–000. Penetration Rate Log	54
45.040–000–000. Stratigraphic Log	55

GEOPHYSICAL/MECHANICAL LOGS

| Article | |
| 45.000–100–000. Geophysical/Mechanical Logs | 58 |

FORMATION SAMPLING METHODS

Article	
45.000–010–000. Contractor's Choice	58
45.000–020–000. Return Flow Method (Continuous)	58
45.000–030–000. Return Flow Method (Circulated)	58
45.000–040–000. Auger Method	59
45.000–050–000. Bailee Method	59
45.000–060–000. Core Barrel Method	59
45.000–070–000. Piston Tube Method	59
45.000-080-000. Split Spoon Method 59
45.000-090-000. Side Hole Core Method 59

FORMATION SAMPLING INTERVAL

45.000-001-000. Sampling by Formation Interval 60
45.000-002-000. Sampling by Measured Intervals 60
45.000-003-000. Sampling by Measured and Formation Intervals 60

WATER (AQUIFER) SAMPLING

45.000-000-100. Water Sampling 60

FORMATION SAMPLE SIZE, HANDLING AND IDENTIFICATION

45.000-000-010. Size of Sample: Containers, Identification, Storage and Transfer .. 61

METHOD OF PAYMENT FOR TEST HOLES AND SAMPLES

45.000-000-001. Method of Payment

Option A (Lump Sum) ... 61
Option B (Time and Materials) 62
Option C (Unit Price) .. 62

Article

46. Well Construction .. 62

METHODS OF CONSTRUCTION

46.100-000-000. Methods of Construction 66

DRILLING FLUID CONTROL PROGRAM

46.010-000-000. Production Zone Protection 67

DRILLER'S LOG AND REPORTS

46.001-000-000. Logs ... 68

TEMPORARY CAPPING

46.000-100-000. Temporary Capping 68

METHOD OF PAYMENT OF WELL CONSTRUCTION

46.000-010-000. Method of Payment

Option A (Lump Sum) ... 68
Option B (Time and Materials) 68
Option C (Unit Price) .. 68

Article

47. Well Casing Selection and Installation 68

CASING SELECTION

47.100-000-000. Well Casing Selection 74

METHODS OF INSTALLATION

47.010-000-000. Driven (Well Point) 76
47.020-000-000. Jacking ... 76
47.030-000-000. Driven (Drive Shoe) 76
47.040-000-000. Lowering .. 76
47.050-000-000. Floating ... 76
METHOD OF JOINING

47.001-000-000. Contractor's Choice .. 77

SANITARY PROTECTION OF WELL

47.000-100-000. Termination at Top of Well 77

CASING SEATING

47.000-010-000. Unconsolidated Formations 78
47.000-020-000. Consolidated Formations 78

PRESSURE TESTING OF SEATING

47.000-001-000. Pressure Testing of Seating 78

METHOD OF PAYMENT FOR CASING AND INSTALLATION

47.000-000-100. Method of Payment

Option A (Lump Sum) .. 78
Option B (Time and Materials) .. 78
Option C (Unit Price) ... 78

Article

48. Well Grouting ... 79

GROUTING MATERIALS TO BE USED

48.100-000-000. Concrete Grout .. 81
48.200-000-000. Sand Cement Grout .. 81
48.300-000-000. Neat Cement Grout .. 81

METHODS OF INSTALLATION OF GROUT

48.010-000-000. Bailer Dumping .. 81
48.020-000-000. Gravity Filling Without Tremie Method 82
48.030-000-000. Tremie Method .. 82
48.040-000-000. Positive Placement—Exterior Method 82
48.050-000-000. Positive Placement—Exterior Method—Two Plug 83
48.060-000-000. Positive Placement—Interior Method—Upper Plug 83
48.070-000-000. Positive Placement—Interior Method—Capped Casing 83
48.080-000-000. Continuous Injection Method 84
48.090-000-000. Grout Displacement Method 84

LOCATION OF GROUT

48.001-000-000. Surface Formation Seal 85
48.002-000-000. Bottom Seal Grouting 85
48.003-000-000. Selected Interval Grouting 85
48.004-000-000. Continuous Grouting 85

CENTRALIZERS

48.000-100-000. Contractor's Choice 85
48.000-200-000. Centralizers at Bottom of Hole 87
48.000-300-000. Centralizers at Bottom of Hole and Other Critical Grouting Points .. 87
48.000-400-000. Centralizers at 25 Feet Intervals 87
<table>
<thead>
<tr>
<th>Article</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILTER TYPE SCREEN</td>
<td>88</td>
</tr>
<tr>
<td>SCREEN-TYPE SELECTION</td>
<td></td>
</tr>
<tr>
<td>Conductor's Choice</td>
<td>90</td>
</tr>
<tr>
<td>Perforated Pipe</td>
<td>90</td>
</tr>
<tr>
<td>Punched (With Material Removed) and Slotted Pipe</td>
<td>91</td>
</tr>
<tr>
<td>Reinforced Wire Wrapped Punched Pipe</td>
<td>91</td>
</tr>
<tr>
<td>Artificial Filter Screen (Precast)</td>
<td>91</td>
</tr>
<tr>
<td>Louvred Pipe</td>
<td>91</td>
</tr>
<tr>
<td>Continuous Slot Wire Wound Screen</td>
<td>91</td>
</tr>
<tr>
<td>SCREEN APERATURE SIZE</td>
<td></td>
</tr>
<tr>
<td>Conductor's Choice</td>
<td>91</td>
</tr>
<tr>
<td>Aperture Size Selection Criteria</td>
<td>91</td>
</tr>
<tr>
<td>SCREEN LENGTH</td>
<td></td>
</tr>
<tr>
<td>Conductor's Choice</td>
<td>92</td>
</tr>
<tr>
<td>Screen Length Selection Criteria</td>
<td>92</td>
</tr>
<tr>
<td>METHOD OF SCREEN INSTALLATION</td>
<td></td>
</tr>
<tr>
<td>Conductor's Choice</td>
<td>93</td>
</tr>
<tr>
<td>Driven Well Point Method</td>
<td>93</td>
</tr>
<tr>
<td>Washing Method</td>
<td>93</td>
</tr>
<tr>
<td>Pull Back Method</td>
<td>93</td>
</tr>
<tr>
<td>Driven Through Casing Method</td>
<td>93</td>
</tr>
<tr>
<td>Bailed Through Casing Method</td>
<td>93</td>
</tr>
<tr>
<td>Bailed or Air Jetted Through Casing Method</td>
<td>94</td>
</tr>
<tr>
<td>Washed Through Casing Method</td>
<td>94</td>
</tr>
<tr>
<td>Suspend From Surface Method</td>
<td>94</td>
</tr>
<tr>
<td>METHOD OF JOINING SCREEN TO SCREEN</td>
<td></td>
</tr>
<tr>
<td>Joining</td>
<td>94</td>
</tr>
<tr>
<td>METHOD OF CONNECTING SCREEN TO CASING</td>
<td></td>
</tr>
<tr>
<td>Neoprene or Rubber Seal</td>
<td>94</td>
</tr>
<tr>
<td>Lead Packer</td>
<td>94</td>
</tr>
</tbody>
</table>
49.000-000-300. Cement Fill in Annulus .. 95
49.000-000-400. Threaded, Coupled, Welded Joints 95

METHODS OF SEALING SCREEN BOTTOM

49.000-000-010. Lead Method .. 95
49.000-000-020. Bag Cement Method 95
49.000-000-030. Self-Closing Valve Method 95
49.000-000-040. Fabricated Plug Method 95
49.000-000-050. Welded Plate Method (Casing Material) 95
49.000-000-060. Welded Plate Method (Screen Material) 95

METHOD OF PAYMENT FOR WELL SCREENS

49.000-000-001. Method of Payment
 Option A (Lump Sum) .. 95
 Option B (Time and Materials) 95
 Option C (Unit Price) .. 96

50. Well Filter Construction (Artificial) 96

FILTER-TYPE SELECTION

50.100-000-000. General Criteria .. 97

FILTER CONSTRUCTION STANDARDS

50.010-000-000. General .. 98

SELECTION OF FILTER GRAIN SIZE AND SCREEN APERTURE SIZE

50.001-000-000. Contractor’s Choice 98
50.002-000-000. Selection Criteria 98

LENGTH OF ARTIFICIAL FILTER

50.000-100-000. .. 98
50.000-200-000. .. 98
50.000-300-000. .. 98
50.000-400-000. .. 98

STORAGE OF FILTER MATERIAL

50.000-010-000. Bulk Delivery—Open Storage 99
50.000-020-000. Bulk Delivery—Covered Storage 99
50.000-030-000. Bagged Delivery ... 99

DISINFECTION OF FILTER MATERIAL

50.000-001-000. Disinfection .. 99

METHOD OF INSTALLATION OF FILTER MATERIAL

50.000-000-100. Poured ... 99
50.000-000-200. Poured with Fluid 99
50.000-000-300. Tremie Placed .. 99
50.000-000-400. Tremie Placed with Fluid 99
50.000-000-500. Tremie with Ell .. 99
50.000-000-600. Crossover Tool ... 99

X
METHOD OF PAYMENT FOR ARTIFICIAL WELL FILTER

50.000–000–010. Method of Payment
Option A (Lump Sum) ... 100
Option B (Time and Materials) 100
Option C (Unit Price) ... 100

Article
51. Well Plumbness and Alignment 100

METHODS OF TESTING

51.100–000–000. Plumbness and Alignment Test 100
51.200–000–000. Plumbness and Alignment Test 101
51.300–000–000. Drift Indicator Survey 103

METHOD OF PAYMENT FOR WELL PLUMBNESS AND ALIGNMENT

51.010–000–000. Method of Payment
Option A (Lump Sum) ... 104
Option B (Time and Materials) 104
Option C (Unit Price) ... 104

Article
52. Well Development .. 104

PUMPING OR BAILING METHOD

52.100–000–000. Continuous Overpumping 106
52.200–000–000. Interrupted Overpumping 106
52.300–000–000. Surging and Bailing (Utilizing Bailer) 106
52.400–000–000. Surging and Bailing (Utilizing Surge Block) 107

MECHANICAL SURGING AND PUMPING METHOD

52.010–000–000. Surging and Pumping 107

HYDRAULIC JETTING METHOD

52.001–000–000. Hydraulic Jetting 107

AIR DEVELOPMENT METHOD

52.000–100–000. Single Pipe System Open to Atmosphere 107
52.000–200–000. Single Pipe System Closed to Atmosphere 107
52.000–300–000. Two Pipe System 108

DEVELOPMENT AIDS

52.000–010–000. Washing with Water 109
52.000–020–000. Washing with Chemicals 109

SAND CONTENT TESTING

52.000–001–000. Sand Content Testing 109

SAND CONTENT LIMITS

52.000–000–100. .. 109
52.000–000–200. .. 109
52.000–000–300. .. 109
52.000–000–400. .. 110
52.000–000–500. .. 110
RECORD OF MEASUREMENT

52.000-000-010. Recording Measurements 110

METHOD OF PAYMENT FOR WELL DEVELOPMENT

52.000-000-001. Method of Payment
Option A (Lump Sum) .. 110
Option B (Time and Materials) 110
Option C (Unit Price) .. 110

Article

53. Well Testing for Performance 110

TYPES OF PUMPING TEST PERFORMED

53.100-000-000. Bailing Test Method 112
53.200-000-000. Air Blow Test Method 112
53.300-000-000. Air Lift Test Method 112
53.400-000-000. Variable Rate Method 113
53.500-000-000. Constant Rate Method 113
53.600-000-000. Step-Continuous Composite Method 114

ABORTED TESTS

53.010-000-000. Aborted Tests 115

LOCATION OF DISCHARGE

53.001-000-000. Discharge Water 115

RECORD OF PUMPING TESTS

53.000-100-000. Records ... 115

MEASUREMENT OF WATER LEVELS

53.000-010-000. Bailer Line Method 116
53.000-020-000. Contractor’s Choice 116
53.000-030-000. Air Line Method 116
53.000-040-000. Steel Tape Method 116
53.000-050-000. Electric Sounder Method 117

COLLECTION OF WATER SAMPLES

53.000-001-000. Water Samples and Analysis 117

METHOD OF PAYMENT FOR TESTING FOR PERFORMANCE

53.000-000-100. Method of Payment
Option A (Lump Sum) .. 117
Option B (Time and Materials) 117
Option C (Unit Price) .. 117

Article

54. Well Disinfection ... 117

SCHEDULING DISINFECTION

54.100-000-000. .. 120

DISINFECTANTS

54.010-000-000. .. 120

xii
INTERIM DISINFECTION

54.001-000-000. .. 120

DAILY OPERATIONS DISINFECTION

54.000-100-000. .. 121

DISINFECTION PROCEDURE

54.000-010-000. .. 121

DISINFECTION OF WATER/TABLE WELLS

54.000-001-000. Dry Chlorine Compounds 122
54.000-002-000. Stock Solution (I) ... 122
54.000-003-000. Stock Solution (II) ... 122
54.000-004-000. Prepared Solution ... 122

DISINFECTION OF FLOWING ARTESIAN WELLS

54.000-000-100. Dry Chlorine Compounds 122
54.000-000-200. Controlled Flow Disinfection 122
54.000-000-300. Stock Solution .. 123

METHOD OF PAYMENT FOR WELL DISINFECTION

54.000-000-010. Method of Payment
 Option A (Lump Sum) ... 123
 Option B (Time and Materials) .. 123
 Option C (Unit Price) ... 123

Article

55. Water Samples and Analyses ... 123

BACTERIOLOGICAL ANALYSES

55.100-000-000. Bacterial ... 126

ANALYSIS FOR SPECIFIC CONSTITUENTS

55.010-000-000. Specific Constituent-Analysis 126

ANALYSIS FOR SPECIFIC PURPOSES

55.001-000-000. Domestic Water Supply 127
55.002-000-000. Well and Treatment Facility Design 127
55.003-000-000. Irrigation Water Supply 127
55.004-000-000. Industrial Water Supply 128
55.005-000-000. Municipal Water Supply 128

TYPES OF SAMPLES

55.000-100-000. Bacterial Sampling 128
55.000-200-000. Bacterial Sampling Plus Chemical Sampling 129
55.000-300-000. Bacterial Sampling Plus Chemical Sampling Plus
 Radiological Sampling .. 129
55.000-400-000. Chemical Sampling Only 129
55.000-500-000. Chemical Sampling Plus Radiological Sampling 130
55.000-600-000. Radiological Sampling Only 130

COLLECTION METHODS

55.000-010-000. Bailed Sample Method 130
55.000-020-000. Discharge Sample Method 130

xiii
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>131</td>
</tr>
<tr>
<td>132</td>
</tr>
<tr>
<td>132</td>
</tr>
<tr>
<td>133</td>
</tr>
<tr>
<td>133</td>
</tr>
<tr>
<td>133</td>
</tr>
<tr>
<td>133</td>
</tr>
<tr>
<td>136</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>141</td>
</tr>
<tr>
<td>141</td>
</tr>
<tr>
<td>141</td>
</tr>
<tr>
<td>142</td>
</tr>
</tbody>
</table>

WELL HEAD TESTS

- 55.000–001–000. Temperature and pH Tests Only
- 55.000–002–000. Temperature and pH Tests Plus Gas Test
- 55.000–003–000. Temperature and pH Tests Plus Specific Electrical Conductance Test
- 55.000–004–000. Temperature and pH Tests Plus Specific Electrical Conductance Test Plus Alkalinity and Turbidity Tests
- 55.000–005–000. Temperature and pH Tests Plus Gas Test Plus Specific Electrical Conductance Test
- 55.000–006–000. Temperature and pH Tests Plus Gas Test Plus Specific Electrical Conductance Test Plus Alkalinity and Turbidity Tests

STANDARDS OF TEST AND SAMPLES

- 55.000–000–100. Laboratory Requirements

METHOD OF PAYMENT FOR WATER SAMPLES AND ANALYSES

- 55.000–000–010. Method of Payment
 - Option A (Lump Sum)
 - Option B (Time and Materials)
 - Option C (Unit Price)

Article 56. Permanent Well and Test Hole Abandonment

AQUIFER SEALING CRITERIA

- 56.100–000–000. Aquifer Sealing Criteria

PERMANENT BRIDGES

- 56.010–000–000. Permanent Bridges

PLACEMENT OF GROUT

- 56.001–000–000. Placement Operations
- 56.002–000–000. Intermediate Seals
- 56.003–000–000. Seal at Uppermost Aquifer
- 56.004–000–000. Seals Placed Within Casing, Liners, Filters, etc.

PLACEMENT OF FILL

- 56.000–100–000. Non-Producing Zones

SPECIAL CONDITIONS

- 56.000–010–000. Pre-existing Contamination

WELL ABANDONMENT RECORDS

- 56.000–001–000. Recording Location of Abandoned Well or Bore Hole
METHOD OF PAYMENT FOR ABANDONMENT

56.000-000-100. Method of Payment
Option A (Lump Sum) ... 142
Option B (Time and Materials) 142
Option C (Unit Price) ... 142

APPENDIX A. SAMPLE NOTICE TO BIDDERS 143
APPENDIX B. SAMPLE PROPOSAL 145
APPENDIX C. UNIT PRICE PROPOSAL 147
APPENDIX D. BID SCHEDULE ... 150
APPENDIX E. STANDARD FORM OF AGREEMENT BETWEEN OWNER AND CONTRACTOR ... 152
APPENDIX F. STANDARD FORM—WELL ESTIMATE AND/OR WELL DRILLING CONTRACT OR REPAIR ORDER AGREEMENT 154
APPENDIX G. METRIC-ENGLISH UNIT CONVERSION TABLE 156

LIST OF FIGURES

Figure 1. Minimum Lengths of Cement for Different Sizes and Lengths of Casing ... 86
Figure 2. Plumbness Test Assembly 102
Figure 3. Centrifugal Sand Sampler 110
Figure 4. Permanent Bridge Seals 137
Figure 5. Intermediate Seal in Lined Hole 138
Figure 6. Uppermost Aquifer Seals in Well Abandonment 139

LIST OF TABLES

Table 1. Various Size Grade Scales in Common Use 56
Table 2. Line Shaft Turbines 1800 RPM 71
Table 3. Line Shaft Turbines 1200 RPM 71
Table 4. Casing Sizes—Domestic Wells 72
Table 5. Collapse Strength of Steel Pipe in Pounds Per Square Inch and Feet of Water Head ... 73
Table 6. Wall Thicknesses for Steel-Water Well Pipe 74
Table 7. Steel Well Casing Fabricated from Standard Plate or Sheets 74
Table 8. Steel Well Casing Fabricated from “Well Casing Steel” Sheets ... 75
Table 9. PVC Casing ... 75
Table 10. PVC Casing ... 75
Table 11. Maximum Screen Entrance Velocities 90
Table 12. Chlorine Compound Required to Dose 100 feet of Water-Filled Well at 50 PPM ... 121
Introduction

During 1969 through 1971 the U.S. Environmental Protection Agency and its predecessor the USPHS Bureau of Water Hygiene, through the Southern Regional Education Board, conducted limited surveys of individual home water supply systems in Georgia, Tennessee and Kentucky to determine the quality of drinking water from individual home supply systems and to establish the relationship of the quality of water to type supply system.

The first study, conducted in Georgia in 1969, produced unexpected results. Bacterial analyses of 760 sampled systems showed verified coliform bacteria in 300 (40%) of the samples. Included in the survey were 709 wells of which 265 (37%) showed verified coliform bacteria. A breakdown of all individual home supply systems versus verified coliform showed the following contamination: cisterns—84.2%, springs—73.9%, dug well—74.5%, bored wells—39.4%, drilled wells—18.0%, driven wells—16.7%, and jetted wells—7.1%. Secondly, from this it is obvious that there is some relationship between contamination and type of water supply. The high levels of contamination of cisterns and springs could be explained but the high contamination of wells which tap presumed bacterially pure ground water was unclear. Furthermore, data and information from Tennessee and Kentucky supported the findings in Georgia.

Historically, ground water coming from its natural environment has been considered of good sanitary quality requiring little or no treatment before use as drinking water. Consequently nearly 50 million Americans obtain their drinking water from individual home supply wells tapping this water resource. The data from Georgia, Tennessee and Kentucky, however, indicate that we may have been taking the high bacterial purity of our ground water supplies for granted.

The data collected on system construction appears to have produced the answer on the bacterial contamination of wells. The method used to construct wells, and the construction details themselves affect the bacterial safety of the supply.

Deficiencies in well construction among individual supplies were found to be numerous and included: 1) insufficient and substandard well casing; 2) inadequate “formation seal” between the well casing and the bore hole; 3) poor welding of casing joints; 4) lack of sanitary covers; and 5) use of well pits to protect from freezing. Any one of these deficiencies may allow introduction of bacterial contamination from the surface to the ground water and into the supply system.
The problems facing the person receiving drinking water from an individual water supply system were brought forth during testimony in Congress on the Safe Drinking Water Act. Testimony indicated that millions of Americans may be receiving drinking water which would not meet drinking standards mandated by the Act. As designed, the standards only apply to water delivered by public water supply systems, leaving the individual home supply system unprotected. Congress expressed concern and desire that adequate protection for persons relying on individual water systems for their drinking water be made available.

Predicated upon the results of the State surveys and the testimony before Congress an unsolicited proposal for the development of well construction specifications was presented to the EPA in September of 1971 by the National Water Well Association. NWWA was concerned that the profession they represent (water well drillers and ground water specialists) was using construction procedures which could affect the public health. They felt "a set of generally accepted specifications for well construction that could be widely distributed to consulting engineers, water well contractors, municipalities, industries, agriculturalists, and individual home owners would serve to complement existing regulations, help educate the public, upgrade existing well construction techniques and thereby afford a greater protection to our ground water reserves."

During preparation of the manual, consideration was given to minimum standards already required by many States as well as pertinent suggested standards and specifications already available from other national and state associations. The manual was designed recognizing that well construction techniques will vary with six major criteria; namely, the intended use of the water, the required capacity of the well, the nature of the producing zone, the intended drilling method, and the manner in which the well construction will be paid for. Using these criteria to describe a well, alternate methods were established for the many facets of well construction such as test drilling, logging, casing, grouting, cementing, gravel packing, plumbness, alignment, development, testing, disinfection, sampling, and abandonment.

Also in the manual is a section titled "General Conditions" which is methodology by which a contractor may be engaged to construct a water well. These articles are included in this technical construction manual to inform those unfamiliar with the water well construction profession of normal procedures used when contracting for a well. The EPA feels this information should be made available to the public but recognizes that there may be other adequate alternatives.

Even though the original purpose of this project was to solve contamination problems of the individual supply system, the manual has been designed to be applicable to all types of water wells for all purposes. Proper use of this manual will result in a productive and safe water supply well.
The well construction practices outlined in this manual are supported by EPA as being complete and environmentally sound. The manual is to be a guide to well construction which provides protection of public health, safety and welfare, and protection of the ground water resources. Practices and techniques discussed are not EPA recommendations, regulations or standards required under any Federal action; they are furnished for informational and educational purposes only.